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ABSTRACT

To delineate the astronomical number of possible
interactions of all genes in a genome is a task for which
conventional experimental techniques are ill-suited.
Sorely needed are rapid and inexpensive methods that
identify candidates for interacting genes, candidates
that can be further investigated by experiment. Such a
method is introduced here for an important class of
gene interactions, i.e., transcriptional regulation via
transcription factors (TFs) that bind to specific en-
hancer or silencer sites. The method addresses the
question: which of the genes in a genome are likely to
be regulated by one or more TFs with known DNA
binding specificity? It takes advantage of the fact that
many TFs show cooperativity in transcriptional activa-
tion which manifests itself in closely spaced TF
binding sites. Such ‘clusters’ of binding sites are very
unlikely to occur by chance alone, as opposed to
individual sites, which are often abundant in the
genome. Here, statistical information about binding
site clusters in the genome, is complemented by
information about (i) known biochemical functions of
the TF, (ii) the structure of its binding site, and (iii)
function of the genes near the cluster, to identify genes
likely to be regulated by a given transcription factor.
Several applications are illustrated with the genome of
Saccharomyces cerevisiae , and four different DNA
binding activities, SBF, MBF, a sub-class of bHLH
proteins and NBF. The technique may aid in the
discovery of interactions between genes of known
function, and the assignment of biological functions to
putative open reading frames.

INTRODUCTION

The ultimate challenge to molecular biology is to identify and
fully characterize the complete network of interactions among
genes and their products in an organism. In facing this challenge,
the wealth of information created by genome sequencing efforts
will be an invaluable resource. However, our ability to extract
biologically important information about gene interactions from
genome sequences is still quite limited. Most of the biological
interpretation of genome sequences pertains to the number and
types of genes in an organism. Sorely needed are novel

approaches that permit the formulation of experimentally testable
hypotheses about gene interactions from sequence data alone.
The advantage of such approaches are clear. They could vastly
improve efficacy of experiments by pointing out likely candidates
for interacting genes.

In devising such tools, the fundamental question is: what types
of gene interactions leave traces on the DNA, traces that could
lead to the identification of interacting gene products. Maybe the
prime candidate for such interactions is the transcriptional
regulation of protein coding genes in eukaryotes. Here, transcrip-
tion factors (TFs) bind enhancer sequences near the coding region
of a gene, recruit a basal transcription machinery to the
transcription initiation site, and activate the transcription of the
gene (1). Alternatively, TFs can repress transcription of a gene by
interfering with the basal transcription apparatus in various ways
(2). The common theme is that the binding of TFs to specific,
often short sequences on the DNA is necessary for transcriptional
regulation. Undoubtedly the predominant mechanism regulating
gene expression in eukaryotes, transcriptional regulation ac-
counts for an enormous number of gene interactions. The
availability of an efficient tool for the analysis of genes that are
regulated by a given TF would thus permit analysis of a
significant part of the global network of gene interactions. It
would put cell biology a large step closer to its ultimate goal.

Naively, one might assume that it is sufficient to look for
binding sites of specific TFs near a gene to identify candidate
genes for regulation by the TF. This approach is standard practice
on a small scale, and its extension to entire genomes is
straightforward (3). However, for many known enhancer sites, it
is also deeply problematic. For example, the minimally functional
binding site of the heat shock transcription factor (4,5) occurs
more than 106 times in the genome of Saccharomyces cerevisiae
(unpublished observation). The promoters of most genes would
contain one or more such binding sites, making any biological
conclusions based on binding site occurrence meaningless. Is
there a modification of this approach that would render it useful?
It has long been recognized that most transcriptional regulators
display (homotypic or heterotypic) cooperative interactions,
either when binding DNA, or when activating transcription.
Cooperativity is usually reflected in the occurrence of multiple
closely spaced binding sites on the DNA (6). The approach
introduced below takes advantage of the ubiquity of cooperative
interactions to identify genes putatively regulated by given TFs.
Its basic tenet is that groups (‘clusters’) of TF binding sites linked
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much more tightly than expected by chance alone, are probably
relevant to the transcriptional regulation of a nearby gene. The
central problem is to find a statistically sensible definition of a
highly significant cluster of binding sites. It will be seen below
that common plausibility arguments about the significance of
binding site clusters can be quite misleading, if one takes the
genome-wide distribution of binding sites into account. In only
accepting the statistically most significant groups of binding sites,
it is attempted to minimize the method’s false positive rate. In
addition, various sources of biological information are incorpo-
rated into the analysis, information that is likely to decrease this
rate further. However, the price paid for such conservativism is
that many genes regulated by a TF may not be detected. It is a
price well worth paying, given that a conservative approach will
generate candidate genes that seriously merit further experi-
mental investigation.

A well known general problem in the analysis of DNA
sequences is the enormous heterogeneity of sequence composi-
tion, which violates assumptions needed for most conventional
statistical techniques (7,8). Any statistical approach to the
analysis of DNA sequences will thus provide only a crude
assessment of sequence properties. The method used here cannot
altogether avoid the problems of sequence heterogeneity, but
attempts to alleviate them by taking both global (genome-wide)
and local sequence properties into account.

While the technique is applicable to any eukaryote, it is here
illustrated with the genome of S.cerevisiae. The main reasons are
that potential yeast promoter regions are in general short and
located upstream of the coding region (9,10), and that the yeast
genome does not contain many tandemly repeated sequences
other than rDNA and CUP1 genes (11). Four different applica-
tions are illustrated with different yeast DNA binding proteins.
They include, but are not limited to the identification of novel
interactions among genes of known function, and the putative
assignment of biological function (cell cycle regulation, etc.) to
ORFs with unknown function. The particular choice of four
DNA-binding proteins (out of the ∼75 characterized to date) was
motivated by (i) their well characterized DNA binding sites, (ii)
the length of their binding sites (for methodological reasons
discussed below), and (iii) the variety of applications that they can
illustrate. Needless to say, all candidate gene interactions
identified by the method have to be tested experimentally.
However, while tentative, the results may aid in sifting through
the astronomical number of possible gene interactions, and
identify candidates worthy of experimental investigation.

STATISTICAL METHODS

This section illustrates the statistical techniques used to identify
highly significant clusters of transcription factor binding sites
which are then further analyzed using biological information
about the respective transcription factors. The general approach
has three steps. First, significant clusters of particular binding
sites are detected by what is referred to as a ‘genome walk’
analysis. Second, some of the clusters thus identified are
eliminated from further consideration because of their location in
the genome. Third, the statistical significance of the remaining
clusters is reassessed on the basis of local sequence composition.
By taking both global and local sequence properties into account,
it is attempted to alleviate problems caused by compositional
heterogeneity of DNA. Both the first and the third step critically

depend on methods to estimate the probability of binding site
occurrence on the DNA. These methods are therefore discussed
first. Then, the three steps are explained in greater detail.

Estimates of the probability of site occurrence

What is the probability that a random oligonucleotide with
compositional features similar to those of genomic DNA, and
with the same length as the binding site of interest, matches that
site? To ensure wide applicability of the technique, conventional
consensus sequences are used here instead of position weight
matrices (PWMs; 12,13) for binding sites, because very few
transcription factors are sufficiently well characterized to allow
construction of a PWM. When addressing the above question, one
has to take into account that functional transcription factor
binding sites (i) may occur in either orientation on the DNA, (ii)
may have relaxed sequence requirements at some positions, as
reflected by standard IUB nucleotide codes (14), (iii) in addition
to such ‘ambiguous’ positions, may show a substantial number of
mismatches to their consensus binding site.

The relative frequency of a binding site S of length l (an l-word)
in a DNA sequence of N nucleotides is denoted by pS, and
determined by dividing the number of word occurrences NS in
that sequence by the maximally possible number N – l + 1, i.e.,

pS�
NS

N–l� 1
 . 1

Special cases are the mono- and dinucleotide frequencies pA, pC,
pG, pT, pAA, . . . , pTT. The relative frequencies of a word with
exactly k or at most k mismatches to a given word S of the same
length are denoted as p

Sk, and p
S�k, respectively, where

pS� p
S0. Obviously,

p
S�k��

k

i�0

p
Sk . 2

The corresponding statistical predictors of the probabilities of
word occurrence will be denoted as p^S, p

^
Sk and p^

S�k.

Global predictor based on site counts. Here, the predictor p^
S�k

of site occurrence probability is the relative frequency p
S�k, as

determined by equations 1 and 2, for an admissible number of
mismatches, k. Under the Poisson model of site distribution,
where the probability of observing k sites in a DNA sequence of
length N is given by

Prob(k)� exp(–�) �
k

k!
 . 3

p^S = pS (given by equation 1) is a maximum likelihood estimator
of the distribution parameter λ. One has to count a large number
of sites to ensure a narrow confidence interval for this λ (15).
Given that many transcription factor binding sites are longer than
10 bases (16), very large amounts of sequence may have to be
analyzed to ensure a narrow confidence interval. To maximize
site count, p^S was not determined for each yeast chromosome
separately, but for all 16 chromosomes together.

Prediction based on mononucleotide frequencies. For an oligo-
nucleotide generated by independently and randomly selecting
successive letters from an underlying alphabet, the predicted
probability p^S is simply the product of the letter frequencies, pA,
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. . . , pT. pS�k is calculated via equation 2. To calculate individual

p^
Si’s, one sums the respective probabilities over all i-tupels of

positions where i mismatches can occur. For example, to calculate
p^

S2 for the 8-word 5′-CACWANAA-3′, one has to sum over

�8� 1
2 	 = 21 configurations of sites at which two mismatches

can occur. To predict the probability of finding a word with
mismatches at positions, say, 1 and 4, one calculates
(1 – pC)pApC(1 – pW)pA pA pA, where pW = pA + pT.

Prediction based on dinucleotide frequencies. In this case a DNA
sequence is viewed as a sequence of letters generated as a
first-order Markov chain (17). The probability of finding a
particular word S, say 5′-CACTAA-3′ is then predicted as

p^S�
pCApACpCTpTApAA

pApCpTpA
 .

For words S containing positions with relaxed sequence require-
ments (W, N etc.), and k permissible mismatches to the consensus,
all words were explicitly generated that fulfill the sequence
requirements, and contain only letters A through T. Their respective
probabilities were calculated using the above formula with observed
mono- and dinucleotide frequencies, and added to obtain p

S�k.
So far, for all three predictors, only the probability of encountering

the word S, and not that of its equally functional reverse complement
S was given. For palindromic words, where S = S, and for k = 0
allowed mismatches, the predicted probability of encountering the
word or its reverse complement is simply p^S itself, because
whenever S occurs, S will occur as well. For non-palindromic words,
and for k > 0, the situation is more complicated because there may
be non-palindromic words, e.g., 5′-GAWTTC-3′, that admit some
palindromic matches, 5′-GAATTC-3′, and some non-palindromic
matches, 5′-GATTTC-3′. In such cases, the quantity p^S + p^S will
over-estimate word probability by as much as a factor of two,
because it counts the palindromic word occurrences twice. However,
because the binding sites to be analyzed below are either perfect
palindromes, or contain features that prohibit palindromic matches,
such as strong asymmetries, overestimation of site probability is not
likely to be a problem here.

The next three sections list the principal steps of the statistical
analysis carried out here.

Step 1. Identification of binding site clusters by genome
walk analysis

The most simple, albeit problematic, null-hypothesis of binding
site distribution is the Poisson approximation (equation 3). It can
be violated for two reasons, the first of which is the structure of
the sites themselves. Very short sites, long sites in which a large
number of mismatches is allowed, or sites with a repetitive
structure (e.g., 5′-GGGGG-3′) will not follow a Poisson distribu-
tion even in random DNA with independently distributed
nucleotides. However, this is not a problem for the sites studied
here (see next section). The second reason for deviations from the
Poisson approximation is compositional heterogeneity and the
complex statistical structure of DNA. It is addressed in step 3
below. In step 1, however, statistically significant clusters of
transcription factor binding sites are identified by testing site
spacing against the null-hypothesis of a Poisson distribution.

Denote as X1, . . . , Xn the positions at which a site S or its reverse
S complement are encountered on the DNA. Further, define as X0

the beginning (5′ end of the top strand) of the DNA sequence. The
quantity

Di,j  = Xj  – Xi

denotes the distance between site Xj  and Xi .

Di,i�k�1 �

k�2

j�0

Di�j,i�j�1  k� 1 4

is the length of a stretch of DNA spanning exactly k words. It will
be referred to as a k-cluster. Under the Poisson null-hypothesis
equation 3, the distribution of the distance between successive
words, Di ,i+1, is exponential with density

λe–λz . 5

This is the probability distribution of the length of 2-clusters.
More generally, the length of k-clusters follows a Pearson type III
distribution with density

�

�(k–1)
(�z)k–2e–�z  k� 1 , 6

where Γ(k) = (k – 1)! is the gamma function. This is easily seen
from the characteristic functions of equations 5 and 6 (18). The
probability of observing a k-cluster of length less than x is

Prob(Di,i�k�1 � x) � �

�(k� 1)
�

x

0

(�z)k�2e��zdz . 7

To assess whether the length, x, of an observed k-cluster, Di ,i+k–1,
is shorter than would be expected ‘by chance alone’ under the
null-hypothesis, and for a given significance level P, equation 7
is used to determine whether

Prob(Di ,i+k–1 < x) < P . 8

The appropriate choice of P is discussed below.
The parameter λ needed in the above statistical tests was

estimated here via relative site frequencies in the genome.
However, from each pair of overlapping sites only one site was
(randomly) chosen, and included in the absolute site count NS +
NS. This was done because in general only one of two overlapping
sites can be functional, i.e., occupied by a TF at any given time.
In terms of the statistical analysis, it leads to more conservative
significance tests, because very short and thus highly significant
2-clusters are eliminated. Starting at X0, the lengths of all
k-clusters up to k = 11, i.e., D0,1, D0,2, . . . , D0,10, was determined.
If for any of these k-clusters equation 8 was true, the cluster was
retained for further analysis. This procedure was repeated for
clusters starting at X1 (D1,2, D1,3, . . . , D1,11), X2, through Xn–10,
hence the name ‘genome walk’ analysis.

For all binding sites analyzed here, except those for the
transcription factor MBF, a significance level of P = 0.001 was
chosen, because of the large number of site counts, and thus the large
number of significance tests to be carried out. For example, for a TF
with a genomic site count of NS + NS = 5000, there are ∼500
non-overlapping 10-clusters, and thus 500 independent significance
tests for 10-clusters. A value of P = 0.05 or P = 0.01 would lead to
a high type I error probability. The particular choice of P is
motivated by the counts observed for the binding sites studied here
(103–104 per genome), such that P is of the order of the number of
independent tests carried out for a given cluster size k.
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Table 1. Binding site counts and tests for Poisson distribution in S.cerevisiae genome and in random DNA 

Site Yeast genome Random DNA

Mismatches allowed No of sites χ2 (df) G (df) χ2 (df) G (df)

SBF 5′-CACGAAAA-3 ′ 1 15331 26.40 (10)a 25.37 (10)a 3.78 (10) 4.32 (10)

MBF 5′-ACGCGT-3′ 0 692 2.61 (6) 2.57 (6) 7.94 (7) 8.48 (7)

bHLH 5′-CACGTG-3′ 0 953 7.28 (6) 7.29 (6) 3.01 (7) 3.21 (7)

NBF 5′-ATGTGAAAT-3′ 1 5509 16.34 (9) 16.52 (9) 12.43 (9) 13.17 (9)

aSignificant at 0.005 < P < 0.001

Step 2. Elimination of some statistically significant clusters

Yeast transcriptional regulators function in general only when
bound upstream of the coding region (9,10), with the possible
exceptions of the transcription of Ty retrotransposons (19).
Moreover, regulatory regions that lie interspersed among various
genes and in enormous distances from the gene they regulate seem
to be absent or infrequent in S.cerevisiae (9). Thus, statistically
significant clusters were not considered further, if they (i)
overlapped or were located inside exons, and (ii) if they occurred
downstream of both adjacent open reading frames (ORFs).

Step 3. Analysis of remaining clusters based on local
sequence composition 

Estimating λ via actual site counts in step 1 is necessary because
global sequence composition is a poor predictor of site occurrence
(20). However, local biases in sequence composition may affect
the local probabilities of site occurrence, and thus the actual
significance of the detected clusters. Thus, in the last step of the
analysis, DNA mono- and dinucleotide composition was analyzed
in each of the remaining clusters, or in a 500 bp window centered
around the cluster, whichever was longer. Precisely those mono-
and dinucleotides that occur in the binding sites will be overly
frequent in small clusters. This is why a DNA segment larger than
the actual cluster was used for small clusters. Two new estimates
of λ, based on mono- and dinucleotide distributions in these
regions were used to reassess the significance (equation 8) of the
clusters remaining after step 2. In statistical terms, the underlying
null hypothesis is that site distribution in the genome follows an
inhomogeneous Poisson process, i.e., a Poisson process whose
parameter λ = λ(y) is a function of the location y in the genome
(21). Higher order correlations among nucleotides were not taken
into account for reasons of computational feasibility.

R-scan analysis

This statistical technique (20,22,23) can be used to assess on a
global level whether words show a clumped distribution in genomic
DNA. It uses only the extreme values of the distribution of Di ,i+k (a
k-scan in Karlin’s terminology). Denote as ml

k the lth smallest
k+1-cluster, Di ,i+k. R-scan analysis asks whether ml

k is smaller than
expected by chance alone under the Poisson null-hypothesis. The
relevant formalism can be found in equation 5 of ref. 20.

Goodness of fit tests for exponential distribution

Likelihood ratio and χ2 goodness of fit tests were carried out as
described in ref. 24 (Ch. 17) to establish whether the lengths of
Di ,i+1 followed an exponential distribution. Estimates of λ were

Figure 1. Tests for a clumped distribution of TF binding sites. Shown are the
results of an r-scan analysis for clumped site distribution. An r-scan is defined
as the length of DNA between r+1 consecutive binding sites. The test asks
whether the kth smallest r-scan observed in the genome is significantly smaller
than expected by chance alone under the null-hypothesis of exponentially
distributed binding site distances. A ‘+’ in the table indicates that the respective
value is significantly (P = 0.01) smaller than expected. The rather conservative
significance level is chosen because of the large number of tests carried out. The
figure shows that the binding sites for MBF, SBF, and the bHLH core motif
5′-CACGTG-3′ show a clumped distribution, whereas those of NBF do not.

based on global site counts. Williams’ correction was applied to
the likelihood ratio test (24, p704).

RESULTS AND DISCUSSION

Several applications of the method introduced above are illus-
trated with different yeast transcriptional regulators. The first
example concerns two transcriptional regulators, SBF and MBF
(DSC1), known to regulate the expression of a large number of
genes that are expressed in the late G1 phase of the cell cycle (25).
Both factors are heterodimers that share a common subunit.
However, their consensus DNA binding sequences differ (see
Table 1), and they appear to regulate non-overlapping sets of
genes (26–28). SBF regulates the transcription of the HO
endonuclease, the cyclins CLN1 and CLN2, and the putative
cyclin HCS26 (29). MBF regulates a large number of DNA
synthesis genes, the cyclins CLB5 and CLB6, the kinase SPK1,
and the transcription factor SWI4 (25,28,30).

Global analysis of genomic site distribution

Sites that would not follow a Poisson distribution in random DNA
cannot be analyzed with this method, as discussed above. It was
thus tested whether distances between SBF (MBF) binding sites
follow an exponential distribution in a long (14 Mb) random DNA
sequence with the same nucleotide composition as yeast. The
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Figure 2. Significance profile of SBF binding site clusters on chromosome I.
(a) The statistical significance of all groups of SBF binding sites on
chromosome I. Each point in the x – y plane corresponds to a group of binding
sites comprising the number of sites indicated on the y-axis (2–11), whose 5′
most site starts at the position indicated on the x-axis. The origin (lower left
corner) corresponds to the first group of two binding sites starting at the site
closest to the left telomere of chromosome I. ‘CEN1’ indicates the approximate
position of the centromere. Because there is a total of 292 binding sites on
chromosome I, not all positions can be shown individually. The z-axis shows
a measure of the probability P of finding a group of sites spaced at the observed
or a smaller distance under the assumption of the null-hypothesis. More
precisely, the plotted values are (1 – P)150. Because of this transformation,
(i) peaks on the plot correspond to highly significant clusters, and (ii) all but the
most significant values will be effectively zero. (b) The same plot, but projected
onto the x – z plane. The abscissa indicates the position along the chromosome
from left telomere (position 1) to right telomere (position 230209). The ordinate
shows the P-values of clusters. Notice that there are three clusters with
P < 0.001, which are discussed in greater detail in the text.

distribution parameter λ was estimated via equations 1 and 2.
Results are consistent with a Poisson distribution in random DNA
(Table 1). One mismatch to the SBF binding site was allowed,
because the genes known to be regulated by SBF, such as HO, have
several such near-matches to the SBF consensus in their promoter
region (29). For S.cerevisiae genomic DNA, it would seem likely
that site distribution would deviate from a Poisson, due to
compositional heterogeneity. Perhaps surprisingly, only the SBF
consensus site shows a deviation from the Poisson distribution
(Table 1). However, a goodness of fit test to an exponential
distribution provides only a very crude assessment of distribution
properties. This is because (i) a large amount of distance
information (see the site counts in Table 1) is pooled into a small
number of bins, and (ii) no site distances other than those among
nearest neighbors are included in the test. With these tests, a
clumped distribution of binding sites, which may indicate the
existence of biologically relevant clusters, could only be detected

Figure 3. A significant cluster of SBF-binding sites on chromosome I between
GDH3 and YAL063C. The displayed region corresponds to an 11 kb fragment
starting at 24 kb counted from the left telomere of chromosome I. It includes
the highly significant 4-cluster of SBF binding sites labelled in Figure 2 as
YAL063C/GDH3. A detail of the cluster is shown in the lower part of the figure.
It comprises four SBF binding sites spanning a total length of 144 bp to the last
position of the fourth site. Also shown is the P-value of this 4-cluster, as well
as the P-values of all sub-groups of binding sites, as indicated by the arrows.
Notice that, despite their tight linkage, none of these sub-groups is significant
at P < 0.001. Because the neighboring ORFs are encoded on opposite strands,
and transcribed in opposite directions, SBF is a candidate for transcriptional
regulation of both genes.

if a very large number of very closely spaced site-pairs occurred.
A more sensitive test is provided by r-scan analysis (20,22,23). An
r-scan is the cumulative length of DNA between (r+1) consecutive
binding sites. R-scan analysis for clumped distribution asks
whether the kth smallest r-scan observed in the genome is smaller
than expected by chance alone. Figure 1a and b shows the results
of r-scan analysis for MBF and SBF, respectively. Both MBF and
SBF show a clustered distribution, albeit for different r-values. A
more fine grained analysis is encouraged by these findings.

Genome walk

As an example of the results obtained with the method, Figure 2
shows a significance profile of all binding site clusters of
chromosome I of S.cerevisiae (see Fig. 2 legend). Peaks of the
plot correspond to highly significant clusters, clusters that are
very unlikely to have occurred by chance alone. Three clusters
significant at P < 0.001 are evident. They are located at positions
29760, 188430 and 198837 (not shown in Figure), counted from
the left telomere of chromosome I, and are labelled
YAL063C/GDH3, X and X, respectively. Despite their high
significance, two of these clusters (labelled X) have to be
eliminated from further consideration. The cluster starting at
position 188430 shows a large overlap with the open reading
frame YAR033W. Although it would be possible to include such
clusters under the assumption that some putative ORFs will turn
out to be non-coding regions (31), the conservative approach of
considering only clusters located in bona-fide non-coding regions
is taken here. The second cluster, starting at position 198837, is
eliminated because it occurs downstream of both neighboring
ORFs, OSH1 and YAR047C (not shown). The remaining cluster
at position 29760 occurs in the 5′ non-coding region of the ORF
YAL063C, encoded on the bottom strand, and the gene GDH3,
encoded on the top strand. A detail of this region is shown in
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Figure 3. The figure shows a tightly packed group of four SBF
binding sites spanning 144 bp, significant at P = 7.55 × 10–4. The
figure also shows the significance values for all sub-groups of
binding sites, none of which is below the threshold of P = 0.001.
This 4-cluster of binding sites makes both GDH3 and YAL063C
candidate genes for regulation by SBF.

Table 2 summarizes the results of an analogous analysis for all 16

chromosomes. It shows all clusters of SBF binding sites significant
at P < 0.001 that are also candidates for the regulation of some ORF.
There is experimental evidence that two of the genes are  regulated
by SBF (29). Clusters in the 5′ regions of two divergently
transcribed genes might be involved in the regulation of one or both
of the genes (e.g., the first pair in the table, GDH3/YAL063C, also
shown in Figure 3)

Table 2. Candidate genes for regulation by SBF

Chr. ORF Cluster statistics Estimated significance Gene structure/functionc

Sites/bpa Positionb Global Mono Di

1 YAL063C –1791 unknown

4/144 7.55 × 10–4 5.37 × 10–4 2.9 × 10–3

1 GDH3 –1677 possibly NADP-linked glutamate dehydrogenase

2 YBR162c –3e unknown

7/551 8.31 × 10–5 2.31 × 10–5 2.43 × 10–3

2 YSY6 –115 component of secretory pathway

4 HOd 10/619 –242 1.40 × 10–7 2.32 × 10–8 5.10 × 10–7 mating type switch

4 UME6 –269 TF involved in meiosis and nitrogen repression

3/28 3.17 × 10–4 1.36 × 10–4 5.78 × 10–4

4 MSS4 –413 required for cell growth

7 PDE1 4/113 –110 3.58 × 10–4 1.68 × 10–4 2.39 × 10–4 3′5′-cyclic-nucleotide-phosphodiesterase

7 SNG1 –344 involved in nitrosoguanidine resistance

4/114 3.68 × 10–4 1.45 × 10–4 6.82 × 10–4

7 YGR198W –103 unknown

7 YGR033C –187 unknown

6/252 1.84 × 10–5 5.68 × 10–6 5.92 × 10–5

7 YGR034W –531 unknown

9 YIL169C –1043 unknown

5/253 3.05 × 10–4 1.93 × 10–4 5.32 × 10–4

9 SDL1 –1638 L-serine dehydratase

12 YLR179C –240 unknown

5/308 6.49 × 10–4 2.48 × 10–4 6.46 × 10–3

12 SAM1 –9f S-adenosylmethionine synthetase

12 YLR308W 6/323 –544 6.13 × 10–5 4.45 × 10–5 5.10 × 10–5 unknown

12 MID2 5/202 –651 1.26 × 10–4 4.32 × 10–5 3.72 × 10–4 required for mating

14 YNR051C 8/718 –114 4.40 × 10–5 1.34 × 10–5 3.24 × 10–4 unknown

15 YOL157C –380 unknown

4/144 7.55 × 10–4 3.23 × 10–4 1.30 × 10–3

15 HXT11 –463 high-affinity hexose transporter

15 YOL104C –6314 unknown

6/227 1.10 × 10–5 8.10 × 10–6 9.60 × 10–5

15 ITR2 –5g myo-inositol transporter

15 YOL007C 4/138 –259 6.63 × 10–4 2.94 × 10–4 9.90 × 10–4 unknown

16 CLN2d –531 G1 cyclin

6/536 6.50 × 10–4 2.59 × 10–4 1.34 × 10–2

16 BBP1 –52 deletion mutants defective in cell division

aNumber of binding sites in the cluster/length of cluster in base pairs. Only one value is given for two genes if the genes share a promoter region, i.e., if they are divergently
transcribed.
bDistance of the 3′-most site in the cluster from the start codon.
cFrom the S.cerevisiae genome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.
dGene is known to be regulated by SBF.
eA significant sub-cluster with a higher P-value exists which ends at position –56.
fNo significant sub-cluster exists whose 3′-most site lies upstream of –9.
gA significant sub-cluster with a higher P-value exists which ends at position –21.
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The clusters listed in the table were identified on the basis of their
P-values (given in column 5), which are calculated from genomic
binding site counts. Local P-values (columns 6 and 7 of Table 2)
based on local mono- and dinucleotide composition in the
respective promoter region are included here to account for
compositional heterogeneity in genomic DNA (32). Any cluster
with a local P-value vastly higher than the global P-value indicates
that local base-composition may have favored occurrence of the
cluster. To avoid assigning a cut-off point to significance, all local
P-values are listed. However, any cluster that shows a local P-value
vastly higher than its global P-value should only be considered
further if other evidence argues for its biological relevance.

Twenty six ORFs emerge as candidates for further investigation,
based on global P-values <0.001. Fourteen of these are genes with
known function, two of which, HO and CLN2, are known to be
regulated by SBF (29). Indeed, the regulatory region of HO
contains the cluster of SBF binding sites with the highest
significance of all, P = 2.32 × 10–8. Two other genes known to be
regulated by SBF, CLN1 and HCS26, were not detected by this
analysis, because the significance of the respective binding site
clusters is well above P = 0.001 (not shown). This illustrates the
price paid for trying to minimize the false positive rate, i.e., a high
false negative rate of not detecting genes regulated by a TF. Given
only four genes known to be regulated by SBF, a statistically
reliable estimate of this rate is clearly impossible, but it may well
be of the order of 50% or higher. Of the 24 ORFs that are not known
to be regulated by SBF, some are suspicious based on features of
the site clusters. The cluster associated with the gene pair
YBR162C/YSY6 has a suspiciously high local P-value of
2.43 × 10–3, and its 3′ most site lies only 3 bp upstream of the start
codon of YSY6. Such a site would lie downstream of the
TATA-box (9), and would thus probably be irrelevant to transcrip-
tional regulation. YLR179C/SAM1 and YOL104C/ITR2 might be
excluded on similar grounds. Nine of the remaining 18 strong
candidate ORFs are functional genes, and biological criteria can be
applied to identify good candidate genes for further investigation
among them. For example, four of these nine ORFs, UME6,
MSS4, MID2, and BBP1, are thought to have a function in the
cell-cycle, although not necessarily in the G1/S-transition (Table
2). No such criteria can be applied to ORFs of unknown function,
and one can only consider P-values as rough guides to identify
promising candidates for further investigation (e.g.,
YGR033C/YGR034W with a 6-cluster of P < 5.92 × 10–5).

Evidence supporting biological relevance of significant
clusters

In addition to (i) the detection of genes known to be regulated by
SBF, and (ii) the detection of genes with a likely role in the cell
cycle, two pieces of evidence suggest that this type of statistical
analysis yields biologically meaningful results. First, consider all
clusters of binding sites significant at P < 0.001, including clusters
known to be overlapping with, or contained in ORFs. If the
individual sites belonging to such clusters were randomly distrib-
uted among coding and non-coding regions, one would expect
∼72% of the individual sites to occur in coding regions, because
coding regions account for ∼72% of the yeast genome (33).
However, SBF binding sites belonging to significant clusters occur
with vastly higher frequency in non-coding regions (Table 3, χ2

= 109.53, P << 10–3). Could this simply be due to differences in
the base composition of coding and non-coding regions that favor

site occurrence in non-coding regions? The predicted probabilities
of site occurrence (Table 4) based on the base composition in
non-coding and coding regions do not support this possibility.
Predicted site probabilities either differ by <2% for non-coding and
coding regions, or even suggest that SBF binding sites should occur
more frequently in coding regions, in stark contrast to the
observation. It is tempting to speculate that this biased distribution
has to do with transcriptional regulation. For example, it might be
the result of (i) positive selection for clusters in non-coding regions
where they can play a role in regulating gene expression, or (ii)
negative selection eliminating clusters in coding regions, because
the binding of several copies of a transcription factor inside an ORF
may interfere with transcription. If this is true, the distribution of
site clusters among coding/non-coding regions might aid in
assessing whether the binding site of a DNA-binding protein with
unknown function has a role in transcriptional regulation.

Table 3. Binding sites belonging to significant clusters occur preferably in
non-coding regions

Site Total Coding Non-Coding χ2 (1 df)

Obs. Exp. Obs. Exp.

SBF 461 231 331.9 230 129.1 109.53

MBF 114 37 82.1 77 31.9 88.54

bHLH 76 31 54.7 45 21.3 36.64

NBF 195 114 140.4 81 54.6 17.73

Expected values in non-coding and coding regions are based on the fact that 72% of
the S.cerevisae genome encodes for proteins. All χ2 values significant at P < 0.001.

Table 4. Estimated probabilitiesa of binding site occurrence in coding and
non-coding regions of S.cerevisiae

Site Non-coding Coding

Mono Di Mono Di

SBF 9.88 × 10–4 1.11 × 10–3 9.73 × 10–4 1.22 ×10–3

MBF 1.13 × 10–4 7.46 × 10–5 1.31 × 10–4 5.78 × 10–5

bHLH 1.13 × 10–4 1.01 × 10–4 1.31 × 10–4 9.87 × 10–5

NBF 5.39 × 10–4 6.34 × 10–4 4.80 × 10–4 6.19 × 10–4

aEstimates are based on 1000 randomly chosen 1 kb DNA segments from cod-
ing or non-coding regions, i.e., on 1 Mb of genomic DNA.

The second piece of evidence concerns the distribution of
observed mismatches to the consensus. If one considers SBF
binding sites in the regulatory regions of the four genes known to
be regulated by SBF, it appears that some positions are more
variable than others (29). A statistically sound argument is
difficult to make, partly because the number of binding sites is
small (29). If the sites observed in the clusters shown in Table 2
were irrelevant to SBF-binding and transcriptional regulation,
one would expect the mismatches to the consensus to be evenly
distributed across the sites. This is not what is observed. The listed
clusters consist of 70 individual sites, 69 of which show one
mismatch to the consensus, 5′-CACGAAAA-3′. The number of
sites with mismatches at each position is
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Table 5. Candidate genes for regulation by MBF

Chr. ORF Cluster statistics Estimated significance Gene structure/functionc

Sites/bpa Positionb Global Mono Di

1 RFA1d –130 replication factor A, 69 kDa subunit

2/36 1.72 × 10–3 3.83 × 10–3 5.54 × 10–3

1 YAR008W –186 unknown

2 POL12d 2/29 –194 1.32 × 10–3 2.30 × 10–3 1.94 × 10–3 DNA polymerase I, β subunit

3 YCL060C 2/35 –838 1.66 × 10–3 3.05 × 10–3 2.01 × 10–3 unknown

3 YCR064C –487 unknown

2/54 2.75 × 10–3 5.10 × 10–3 1.01 × 10–2

3 HCM1 –269 isolated as suppressor of a calmodulin
(CMD1) mutant

4 YDL018C –122 unknown

2/44 2.18 × 10–3 4.59 × 10–3 3.00 × 10–3

4 CDC7 –539 protein kinase required for initiation of mit.
DNA synthesis

4 MCD1 2/86 –292 4.58 × 10–3 5.99 × 10–3 8.13 × 10–3 mitotic chromosome determinant; similar to
Schizosaccharomyces pombe RAD21

4 YDR097C 2/26 –171 1.15 × 10–3 2.2 × 10–3 3.42 × 10–4 unknown

4 YDR134C 2/54 –344 2.75 × 10–3 9.35 × 10–3 1.15 × 10–3 unknown

5 RNR1d 4/192 –306 2.01 × 10–7 1.37 × 10–6 1.64 × 10–6 ribonucleotide reductase regulatory subunit 1

5 PUP3 –433 putative proteasome subunit

2/47 2.35 × 10–3 6.91 × 10–3 5.99 × 10–3

5 RAD51d –160 recombinational DNA repair

7 CLB6d –372 cyclin

2/32 1.49 × 10–3 3.26 × 10–3 4.80 × 10–3

7 YGR110W –6810 unknown

9 YIL026C 2/13 –123 4.01 × 10–4 9.98 × 10–4 1.65 × 10–3 unknown

10 NCA3 –1197 mutation affects mitochondrial ATP synthase

2/42 2.06 × 10–3 4.13 × 10–3 3.80 × 10–3

10 ASF1 –180 causes expression of silent loci when
overexpressed

10 YJR030C 2/16 –216 5.73 × 10–3 9.16 × 10–4 1.40 × 10–3 unknown

11 RAD27 –123 exonuclease required for processing of
Okazaki fragments

2/58 2.98 × 10–3 6.04 × 10–3 8.97 × 10–3

11 ABFI –520 transcription factor and ARS binding protein

12 CDC45 –145 DNA replication initiation protein

2/36 1.72 × 10–3 2.73 × 10–3 5.28 × 10–3

12 YLR104W –469 unknown

12 FKS1 2/60 –583 3.09 × 10–3 7.20 × 10–3 1.15 × 10–2 1,3-β-D-glucan synthase

14 YNL313C –145 unknown

2/18 6.88 × 10–4 1.14 × 10–3 9.27 × 10–4

14 RFA2d –108 replication factor A, 32 kDa subunit

14 YNL274C –558 unknown

2/25 1.09 × 10–3 3.26 × 10–3 2.99 × 10–3

14 YNL273W –136 unknown

14 POL1d 2/41 –173 2.00 × 10–3  2.26 × 10–3 3.13 × 10–3 DNA polymerase I

15 YOL018C –271 unknown

2/19 7.45 × 10–4 1.08 × 10–3 9.34 × 10–4

15 YOL017W –171 unknown

15 CDC21d –116 thymidilate synthase

2/43 2.12 × 10–3 4.05 × 10–3 2.12 × 10–3

15 UFE1 –470 null-mutant defective in spore germination
and veg. growth

Table continued
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Table 5. continued

Chr. ORF Cluster statistics Estimated significance Gene structure/functionc

Sites/bpa Positionb Global Mono Di

16 SPK1d –254 S-phase specific kinase

2/31 1.43 × 10–3 2.47 × 10–3 2.35 × 10–3

16 YPL152W –557 unknown

16 DSS4 –327 GDP dissociation factor for Sec4p

2/16 5.73 × 10–4 1.32 × 10–4 1.21 × 10–3

16 RLF2 –222 involved in DNA-replication-linked
nucleosome assembly

16 YPR075C 2/29 –159 1.32 × 10–3 3.37 × 10–3 2.20 × 10–3 unknown

aNumber of binding sites in the cluster/length of cluster in base pairs. Only one value is given for two genes if the genes share a promoter region, i.e., if they are divergently
transcribed.
bDistance of the 3′-most site in the cluster from the start codon.
cFrom the S.cerevisiae genome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.
dGene is known to be regulated by MBF.

This highly significant deviation from the expected uniform
distribution [χ2 = 31.99(7df), P < 0.001] further suggests that the
clusters in Table 2 are not only statistically significant, but also
biologically relevant. Moreover, for most of the positions, the
pattern of mismatches is similar to that for the sites in the four
genes known to be regulated by SBF (29).

The analysis of binding site distribution for MBF proceeds
analogously. MBF binding sites show a clumped distribution in
the genome (Fig. 1). Sites belonging to significant clusters occur
preferentially in non-coding regions (Table 3), an observation that
cannot be explained by differences in base composition (Table 4).
Table 5 shows 39 genes identified through the genome walk
analysis. Because of the small number of MBF binding sites in the
genome (Table 1), a somewhat higher significance level of P =
0.005 was used here. Because of this small number of sites, a
group of only two closely spaced sites can be significant. In fact,
all candidate genes except RNR1 (which is known to be regulated
by MBF; 30) have only two binding sites in their non-coding
region. Significance estimates based on mono- and dinucleotide
distributions are to be taken with caution here, because global
genome composition considerably overestimates the probability
of site occurrence (not shown). If this holds for local composition
as well, then the values shown in column 6 and 7 of Table 5 will
considerably underestimate cluster significance. For nine of the
39 identified candidate genes, regulation by MBF has already
been shown or proposed (25,30). Of the remaining 30 candidates,
17 are ORFs of unknown function. Among the 13 genes with
known function are some good candidates for regulation by MBF,
based on their role in the cell-cycle, and based on the fact that
MBF is known to regulate the expression of genes involved in
DNA replication. One example is RLF2, involved in the assembly
of nucleosomes on replicating DNA (34). Another example is
RAD27 (RTH1), a 5′–3′ exonuclease required for the processing
of Okazaki fragments during replication (35). Notably, 28 out of
the 39 candidate genes are members of gene pairs that are
transcribed divergently on opposite strands.

Families of DNA binding activities

Families of transcription factors with widely overlapping binding
specificities are common in eukaryotes, and a one-to-one relation

between distinct transcription factors and different binding sites
does not always exist (36,37). Where this is the case, one may
only be able to analyze binding sites common to a group of factors
(13), but the genome walk approach may still be useful in
identifying genes regulated by one or more factors in such a
group.

DNA binding proteins belonging to the basic helix–loop–helix
(bHLH) family of transcription factors (38) bind the core motif
5′-CANNTG-3′. In budding yeast, at least six genes encoding
members of this family exist. PHO4, a transcriptional regulator
of genes needed for phosphate utilization (39), CBFI, necessary
for centromere binding and methionine prototrophy (40), INO2
and INO4, which form a transcriptional regulator of the
expression of phospholipid biosynthetic genes (41,42), SGC1,
required for the expression of the yeast enolase genes (43), and
RTG1, a protein involved in the communication between nucleus,
mitochondria and peroxisomes (44). A sub-group of bHLH
proteins binds the palindromic motif 5′-CACGTG-3′, and CBFI
and PHO4 are members of this sub-group in budding yeast (45).
INO2/INO4 seem to bind DNA with a slightly different
specificity (46,47), and the binding activities of both SGC1 and
RTG1 are not well characterized. Because the bHLH core binding
motif is too short to be analyzed with the method used here, a
search for groups of the 5′-CACGTG-3′ motif was carried out.
Genes whose promoters contain such groups are candidates for
regulation by all characterized bHLH proteins except
Ino2p/Ino4p, plus potentially unknown bHLH factors. As in the
above cases, the bHLH motif shows a clumped distribution (Fig.
1c), and a strong bias for cluster occurrence in non-coding regions
(Tables 3 and 4). Table 6 shows genes associated with highly
significant clusters. There are between 8 and 15 candidate genes,
depending on whether one or both members of the gene pairs in
promoter–promoter orientation are counted. The most significant
cluster (P = 2.9 × 10–6) is associated with two ORFs of unknown
function. Notably, three of the nine candidate genes with known
function, ATP7, NDI1 and IDH1, encode mitochondrial proteins
involved in energy metabolism. It is tempting to speculate that
RTG1 may be involved in their regulation, given that it may have
a role in regulating mitochondrial metabolism (44).
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Table 6. Candidate genes for regulation by 5′-CACGTG-3′ bHLH transcription factors

Chr. ORF Cluster statistics Estimated significance Gene structure/functionc

Sites/bpa Positionb Global Mono Di

4 CDC34 –348 ubiquitin conjugating enzyme E2

3/313 2.89 × 10–4 8.48 × 10–4 3.32 × 10–4

4 YDR055W –545 unknown

5 SWI4 –1121 transcription factor

2/13 5.53 × 10–4 5.57 × 10–4 5.86 × 10–4

5 USS1 –228 U6 snRNA-associated protein

6 LPD1 –263 dihydrolipoamide dehydrogenase precursor

2/17 8.68 × 10–4 1.10 × 10–3 1.71 × 10–3

6 SNP2 –298 snRNP E protein

8 YHR136C –26 unknown

4/336 2.89 × 10–6 1.79 × 10–5 4.86 × 10–5

8 YHR137W –253 unknown

10 YJL012C 2/18 –108 9.47 × 10–4 1.46 × 10–3 1.29 × 10–3 unknown

11 ATP7 –262 ATP synthase subunit d

3/35 2.62 × 10–6 4.33 × 10–6 8.83 × 10–6

11 PUT3 –264 transcriptional activator of proline utilization genes

13 NDI1 –553 mitochondrial NADH ubiquinone 6 oxidoreductase

2/17 8.68 × 10–4 1.15 × 10–3 1.00 × 10–3

13 YML119W –240 unknown

14 IDH1 –392 SU of mitochondrial isocitrate dehydrogenase 1

3/89 2.14 × 10–5 8.31 × 10–5 1.78 × 10–4

14 NCE3 –337 involved in protein secretion

aNumber of binding sites in the cluster/length of cluster in base pairs.
bDistance of the 3′-most site in the cluster from the start codon.
cFrom the S.cerevisiae genome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.

Homotypic cooperativity of DNA binding activities
with unknown function

The example used here is NBF, an activity binding to four sites
in the promoter of the INO1 gene which is involved in the
biosynthesis of membrane phospholipids (46). The products of at
least three genes, OPI1, INO2 and INO4, contribute to the
transcriptional regulation of INO1 (41,48). NBF appears to be
distinct from their products (42,46). NBF binds specifically to a
sequence with consensus 5′-ATGTGAAAT-3′, which is very
similar to an octamer motif, 5′-ATGCAAAT-3′, known to be
involved in the transcriptional regulation of immunoglobulin
genes (36). Although promoter fragments that confer INO1
specific regulation contain at least one NBF binding site, an NBF
site alone in front of a heterologous reporter gene cannot activate
transcription (41). Thus, NBF may not be part of a transcriptional
regulator, or base pairs flanking its binding site may be necessary
for full UAS function (46,49).

5509 sites with at most one mismatch to the NBF consensus
occur in the genome of S.cerevisiae (Table 1). Sites with a larger
number of mismatches are too frequent, and would not allow a
meaningful analysis. When analyzing the distribution of these
5509 sites, a pattern emerges that is fundamentally different from

that of the three binding sites just discussed. First, NBF binding
sites do not show a clumped distribution (Fig. 1d). Second, while
still significant, the distribution among coding and non-coding
regions of sites inside clusters (Table 3) shows a much less biased
pattern than that of the other sites. Whereas the ratio s of binding
sites in non-coding regions to those in coding regions is at least one
for these sites (calculated from Table 3), s = 0.71 for NBF. The
mononucleotide distribution of non-coding regions might account
for a part of the remaining bias (Table 3). Third, despite the large
number of NBF binding sites, only three significant clusters (not
shown) occur that lie entirely in the 5′ non-coding regions of some
ORF. Contrast this with the 15 candidate genes for regulation by
bHLH proteins, despite the fact that their total number of binding
sites is almost 6-fold lower. Thus, NBF binding sites show a pattern
of site and cluster distribution vastly different from that of the
transcriptional regulators analyzed thus far. If NBF is a transcrip-
tional regulator at all, homotypic cooperative interactions are not
a dominant mode of action for NBF.

CONCLUSION AND OUTLOOK

The transcription factors studied here illustrate that despite a large
number of transcription factor binding sites in a genome, the
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number of significant clusters of sites can be very small. Such
clusters also show unexpected features, such as their preferred
occurrence in non-coding regions. These features and the fact that
the method presented here detects genes whose regulation by a
given transcription factor was shown experimentally, indicate its
usefulness. However, the critical question regarding the false
positive rate of the method can only be decided by experimentally
testing its predictions. This may be a challenging task, especially
because presence or absence of a transcription factor alone may
not be sufficient for regulation of a target gene. The availability
of necessary cofactors may critically depend on the environment,
or on the physiological state of a cell.

Many further applications of the method are conceivable, other
than analyzing all characterized transcription factor binding sites
in yeast. For example, the usefulness of the method can be
considerably enhanced by not only considering homotypic
cooperativity, but also heterotypic interactions at a promoter. That
is, consider not only clusters of binding sites for one transcription
factor, but also clusters of binding sites for different transcription
factors. This extension of the method would require only a slight
modification to the statistical approach. The method can also be
applied to higher eukaryotes, where genomic sequences are now
rapidly accumulating. Such an application will raise new
challenges because of (i) the vastly larger genomes involved, (ii)
the abundance of tandem repeats, (iii) the existence of regulatory
regions interspersed between genes, and (iv) the often ill-defined
location of coding regions. In these cases, existing complemen-
tary techniques (50–52), e.g., techniques suitable to determine the
location of likely promoter regions, will have to be used in
conjunction with the method introduced here.
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